Main and epistatic QTL analyses for Sclerotinia Head Rot resistance in sunflower
نویسندگان
چکیده
منابع مشابه
Main and epistatic QTL analyses for Sclerotinia Head Rot resistance in sunflower
Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the most limiting factors in sunflower production. In this study, we identified genomic loci associated with resistance to SHR to support the development of assisted breeding strategies. We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2 -partially resistant-and RHA266 -suscep...
متن کاملIdentifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms.
Sclerotinia head rot is a major disease of sunflower in the world, and quantitative trait loci (QTL) mapping could facilitate understanding of the genetic basis of head rot resistance and breeding in sunflower. One hundred twenty-three F2:3 and F2:4 families from a cross between HA 441 and RHA 439 were studied. The mapping population was evaluated for disease resistance in three field experimen...
متن کاملSNP Discovery and QTL Mapping of Sclerotinia Basal Stalk Rot Resistance in Sunflower using Genotyping-by-Sequencing.
Basal stalk rot (BSR), caused by the ascomycete fungus (Lib.) de Bary, is a serious disease of sunflower ( L.) in the cool and humid production areas of the world. Quantitative trait loci (QTL) for BSR resistance were identified in a sunflower recombinant inbred line (RIL) population derived from the cross HA 441 × RHA 439. A genotyping-by-sequencing (GBS) approach was adapted to discover singl...
متن کاملAnalyses of QTL associated with resistance to Sclerotinia sclerotiorum and Diaporthe helianthi in sunflower (Helianthus annuus L.) using molecular markers
Most traits exhibit continuous variation resulting from the action of multiple genes modified by the environment. Quantitative trait loci (QTL) analysis consists in determining the location and number of genes that condition such quantitative traits and estimating the magnitude of individual gene effect by the use of analytical methods and detailed linkage map. Sclerotinia sclerotiorum and Diap...
متن کاملMapping Isoflavone QTL with Main, Epistatic and QTL × Environment Effects in Recombinant Inbred Lines of Soybean
Soybean (Glycine max (L.) Merr.) isoflavone is important for human health and plant defense system. To identify novel quantitative trait loci (QTL) and epistatic QTL underlying isoflavone content in soybean, F5:6, F5:7 and F5:8 populations of 130 recombinant inbred (RI) lines, derived from the cross of soybean cultivar 'Zhong Dou 27' (high isoflavone) and 'Jiu Nong 20' (low isoflavone), were an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2017
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0189859